博客
关于我
L121买卖股票的最佳时机
阅读量:215 次
发布时间:2019-02-28

本文共 2106 字,大约阅读时间需要 7 分钟。

买卖股票的最佳时机

问题分析

给定一个数组,数组中的每个元素表示某只股票在该天的价格。我们需要找出一笔最优的交易,即买入和卖出股票一次,计算能获得的最大利润。注意,只能完成一笔交易,且卖出价格必须大于买入价格。如果没有这样的交易,利润为0。

方法一:暴力方法

暴力方法通过两重循环遍历所有可能的买入和卖出组合,计算每一笔交易的利润,找出最大值。这种方法的时间复杂度为O(n²),适用于小规模数据,但对于大数组效率较低。

public int maxProfit(int[] prices) {    int len = prices.length;    if (len == 0) return 0;    int max = Integer.MIN_VALUE;    for (int i = 0; i < len; i++) {        for (int j = i; j < len; j++) {            if (max < prices[j] - prices[i]) {                max = prices[j] - prices[i];            }        }    }    return max;}

方法二:记录最小值

通过一次遍历记录最小价格,然后在遍历过程中计算当前价格与最小价格的差值,找出最大利润。这种方法的时间复杂度为O(n),空间复杂度为O(1),效率较高。

public int maxProfit(int[] prices) {    if (prices == null || prices.length == 0) return 0;    int minPrice = Integer.MAX_VALUE;    int maxProfit = 0;    for (int i = 0; i < prices.length; i++) {        if (prices[i] < minPrice) {            minPrice = prices[i];        }        int currentProfit = prices[i] - minPrice;        if (currentProfit > maxProfit) {            maxProfit = currentProfit;        }    }    return maxProfit;}

方法三:动态规划

使用动态规划来解决问题。我们定义两个状态:dp[i][0]表示到第i天结束时不持有股票的现金金额;dp[i][1]表示到第i天结束时持有股票的现金金额。通过状态转移,计算最终的最大利润。

public int maxProfit(int[] prices) {    if (prices == null || prices.length == 0) return 0;    int len = prices.length;    if (len < 2) return 0;    int[][] dp = new int[len][2];    dp[0][0] = 0;    dp[0][1] = -prices[0];    for (int i = 1; i < len; i++) {        dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);        dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);    }    return dp[len - 1][0];}

方法四:优化空间复杂度

通过压缩动态规划的空间复杂度,只需维护两个变量,分别表示前一天的不持有和持有股票的情况。

public int maxProfit(int[] prices) {    if (prices == null || prices.length == 0) return 0;    int len = prices.length;    if (len < 2) return 0;    int hold = -prices[0];    int cash = 0;    for (int i = 1; i < len; i++) {        int newHold = Math.max(hold, hold + prices[i]);        int newCash = Math.max(cash, -prices[i]);        hold = newHold;        cash = newCash;    }    return cash;}

总结

通过上述方法,我们可以高效地解决买卖股票的最佳时机问题。记录最小值和动态规划方法均以O(n)时间复杂度和O(1)空间复杂度,适用于大规模数据处理。

转载地址:http://cjvp.baihongyu.com/

你可能感兴趣的文章
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy中的argsort的用法
查看>>
NumPy中的精度:比较数字时的问题
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>
numpy学习笔记3-array切片
查看>>
numpy数组替换其中的值(如1替换为255)
查看>>
numpy数组索引-ChatGPT4o作答
查看>>
numpy最大值和最大值索引
查看>>
NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
查看>>
Numpy矩阵与通用函数
查看>>
numpy绘制热力图
查看>>
numpy转PIL 报错TypeError: Cannot handle this data type
查看>>
Numpy闯关100题,我闯了95关,你呢?
查看>>